3.2.34 \(\int \coth ^6(c+d x) (a+b \text {sech}^2(c+d x))^3 \, dx\) [134]

3.2.34.1 Optimal result
3.2.34.2 Mathematica [B] (verified)
3.2.34.3 Rubi [A] (verified)
3.2.34.4 Maple [B] (verified)
3.2.34.5 Fricas [B] (verification not implemented)
3.2.34.6 Sympy [F(-1)]
3.2.34.7 Maxima [B] (verification not implemented)
3.2.34.8 Giac [B] (verification not implemented)
3.2.34.9 Mupad [B] (verification not implemented)

3.2.34.1 Optimal result

Integrand size = 23, antiderivative size = 69 \[ \int \coth ^6(c+d x) \left (a+b \text {sech}^2(c+d x)\right )^3 \, dx=a^3 x-\frac {\left (a^3+b^3\right ) \coth (c+d x)}{d}-\frac {(a-2 b) (a+b)^2 \coth ^3(c+d x)}{3 d}-\frac {(a+b)^3 \coth ^5(c+d x)}{5 d} \]

output
a^3*x-(a^3+b^3)*coth(d*x+c)/d-1/3*(a-2*b)*(a+b)^2*coth(d*x+c)^3/d-1/5*(a+b 
)^3*coth(d*x+c)^5/d
 
3.2.34.2 Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(303\) vs. \(2(69)=138\).

Time = 2.90 (sec) , antiderivative size = 303, normalized size of antiderivative = 4.39 \[ \int \coth ^6(c+d x) \left (a+b \text {sech}^2(c+d x)\right )^3 \, dx=\frac {\text {csch}(c) \text {csch}^5(c+d x) \left (-150 a^3 d x \cosh (d x)+150 a^3 d x \cosh (2 c+d x)+75 a^3 d x \cosh (2 c+3 d x)-75 a^3 d x \cosh (4 c+3 d x)-15 a^3 d x \cosh (4 c+5 d x)+15 a^3 d x \cosh (6 c+5 d x)+280 a^3 \sinh (d x)+180 a^2 b \sinh (d x)+60 a b^2 \sinh (d x)+160 b^3 \sinh (d x)+180 a^3 \sinh (2 c+d x)-180 a b^2 \sinh (2 c+d x)-140 a^3 \sinh (2 c+3 d x)+60 a b^2 \sinh (2 c+3 d x)-80 b^3 \sinh (2 c+3 d x)-90 a^3 \sinh (4 c+3 d x)-90 a^2 b \sinh (4 c+3 d x)+46 a^3 \sinh (4 c+5 d x)+18 a^2 b \sinh (4 c+5 d x)-12 a b^2 \sinh (4 c+5 d x)+16 b^3 \sinh (4 c+5 d x)\right )}{480 d} \]

input
Integrate[Coth[c + d*x]^6*(a + b*Sech[c + d*x]^2)^3,x]
 
output
(Csch[c]*Csch[c + d*x]^5*(-150*a^3*d*x*Cosh[d*x] + 150*a^3*d*x*Cosh[2*c + 
d*x] + 75*a^3*d*x*Cosh[2*c + 3*d*x] - 75*a^3*d*x*Cosh[4*c + 3*d*x] - 15*a^ 
3*d*x*Cosh[4*c + 5*d*x] + 15*a^3*d*x*Cosh[6*c + 5*d*x] + 280*a^3*Sinh[d*x] 
 + 180*a^2*b*Sinh[d*x] + 60*a*b^2*Sinh[d*x] + 160*b^3*Sinh[d*x] + 180*a^3* 
Sinh[2*c + d*x] - 180*a*b^2*Sinh[2*c + d*x] - 140*a^3*Sinh[2*c + 3*d*x] + 
60*a*b^2*Sinh[2*c + 3*d*x] - 80*b^3*Sinh[2*c + 3*d*x] - 90*a^3*Sinh[4*c + 
3*d*x] - 90*a^2*b*Sinh[4*c + 3*d*x] + 46*a^3*Sinh[4*c + 5*d*x] + 18*a^2*b* 
Sinh[4*c + 5*d*x] - 12*a*b^2*Sinh[4*c + 5*d*x] + 16*b^3*Sinh[4*c + 5*d*x]) 
)/(480*d)
 
3.2.34.3 Rubi [A] (verified)

Time = 0.36 (sec) , antiderivative size = 71, normalized size of antiderivative = 1.03, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.304, Rules used = {3042, 25, 4629, 25, 2075, 364, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \coth ^6(c+d x) \left (a+b \text {sech}^2(c+d x)\right )^3 \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int -\frac {\left (a+b \sec (i c+i d x)^2\right )^3}{\tan (i c+i d x)^6}dx\)

\(\Big \downarrow \) 25

\(\displaystyle -\int \frac {\left (b \sec (i c+i d x)^2+a\right )^3}{\tan (i c+i d x)^6}dx\)

\(\Big \downarrow \) 4629

\(\displaystyle -\frac {\int -\frac {\coth ^6(c+d x) \left (a+b \left (1-\tanh ^2(c+d x)\right )\right )^3}{1-\tanh ^2(c+d x)}d\tanh (c+d x)}{d}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\int \frac {\coth ^6(c+d x) \left (a+b \left (1-\tanh ^2(c+d x)\right )\right )^3}{1-\tanh ^2(c+d x)}d\tanh (c+d x)}{d}\)

\(\Big \downarrow \) 2075

\(\displaystyle \frac {\int \frac {\coth ^6(c+d x) \left (-b \tanh ^2(c+d x)+a+b\right )^3}{1-\tanh ^2(c+d x)}d\tanh (c+d x)}{d}\)

\(\Big \downarrow \) 364

\(\displaystyle \frac {\int \left ((a+b)^3 \coth ^6(c+d x)+(a-2 b) (a+b)^2 \coth ^4(c+d x)+\left (a^3+b^3\right ) \coth ^2(c+d x)-\frac {a^3}{\tanh ^2(c+d x)-1}\right )d\tanh (c+d x)}{d}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {-a^3 \text {arctanh}(\tanh (c+d x))+\left (a^3+b^3\right ) \coth (c+d x)+\frac {1}{5} (a+b)^3 \coth ^5(c+d x)+\frac {1}{3} (a-2 b) (a+b)^2 \coth ^3(c+d x)}{d}\)

input
Int[Coth[c + d*x]^6*(a + b*Sech[c + d*x]^2)^3,x]
 
output
-((-(a^3*ArcTanh[Tanh[c + d*x]]) + (a^3 + b^3)*Coth[c + d*x] + ((a - 2*b)* 
(a + b)^2*Coth[c + d*x]^3)/3 + ((a + b)^3*Coth[c + d*x]^5)/5)/d)
 

3.2.34.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 364
Int[(((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_))/((c_) + (d_.)*(x_)^2), 
x_Symbol] :> Int[ExpandIntegrand[(e*x)^m*((a + b*x^2)^p/(c + d*x^2)), x], x 
] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b*c - a*d, 0] && IGtQ[p, 0] && (In 
tegerQ[m] || IGtQ[2*(m + 1), 0] ||  !RationalQ[m])
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2075
Int[(u_)^(p_.)*(v_)^(q_.)*((e_.)*(x_))^(m_.), x_Symbol] :> Int[(e*x)^m*Expa 
ndToSum[u, x]^p*ExpandToSum[v, x]^q, x] /; FreeQ[{e, m, p, q}, x] && Binomi 
alQ[{u, v}, x] && EqQ[BinomialDegree[u, x] - BinomialDegree[v, x], 0] &&  ! 
BinomialMatchQ[{u, v}, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4629
Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*((d_.)*tan[(e_.) + (f 
_.)*(x_)])^(m_), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Sim 
p[ff/f   Subst[Int[(d*ff*x)^m*((a + b*(1 + ff^2*x^2)^(n/2))^p/(1 + ff^2*x^2 
)), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, d, e, f, m, p}, x] && Inte 
gerQ[n/2] && (IntegerQ[m/2] || EqQ[n, 2])
 
3.2.34.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(198\) vs. \(2(65)=130\).

Time = 130.20 (sec) , antiderivative size = 199, normalized size of antiderivative = 2.88

method result size
derivativedivides \(\frac {a^{3} \left (d x +c -\coth \left (d x +c \right )-\frac {\coth \left (d x +c \right )^{3}}{3}-\frac {\coth \left (d x +c \right )^{5}}{5}\right )+3 a^{2} b \left (-\frac {\cosh \left (d x +c \right )^{3}}{2 \sinh \left (d x +c \right )^{5}}+\frac {3 \cosh \left (d x +c \right )}{8 \sinh \left (d x +c \right )^{5}}+\frac {3 \left (-\frac {8}{15}-\frac {\operatorname {csch}\left (d x +c \right )^{4}}{5}+\frac {4 \operatorname {csch}\left (d x +c \right )^{2}}{15}\right ) \coth \left (d x +c \right )}{8}\right )+3 a \,b^{2} \left (-\frac {\cosh \left (d x +c \right )}{4 \sinh \left (d x +c \right )^{5}}-\frac {\left (-\frac {8}{15}-\frac {\operatorname {csch}\left (d x +c \right )^{4}}{5}+\frac {4 \operatorname {csch}\left (d x +c \right )^{2}}{15}\right ) \coth \left (d x +c \right )}{4}\right )+b^{3} \left (-\frac {8}{15}-\frac {\operatorname {csch}\left (d x +c \right )^{4}}{5}+\frac {4 \operatorname {csch}\left (d x +c \right )^{2}}{15}\right ) \coth \left (d x +c \right )}{d}\) \(199\)
default \(\frac {a^{3} \left (d x +c -\coth \left (d x +c \right )-\frac {\coth \left (d x +c \right )^{3}}{3}-\frac {\coth \left (d x +c \right )^{5}}{5}\right )+3 a^{2} b \left (-\frac {\cosh \left (d x +c \right )^{3}}{2 \sinh \left (d x +c \right )^{5}}+\frac {3 \cosh \left (d x +c \right )}{8 \sinh \left (d x +c \right )^{5}}+\frac {3 \left (-\frac {8}{15}-\frac {\operatorname {csch}\left (d x +c \right )^{4}}{5}+\frac {4 \operatorname {csch}\left (d x +c \right )^{2}}{15}\right ) \coth \left (d x +c \right )}{8}\right )+3 a \,b^{2} \left (-\frac {\cosh \left (d x +c \right )}{4 \sinh \left (d x +c \right )^{5}}-\frac {\left (-\frac {8}{15}-\frac {\operatorname {csch}\left (d x +c \right )^{4}}{5}+\frac {4 \operatorname {csch}\left (d x +c \right )^{2}}{15}\right ) \coth \left (d x +c \right )}{4}\right )+b^{3} \left (-\frac {8}{15}-\frac {\operatorname {csch}\left (d x +c \right )^{4}}{5}+\frac {4 \operatorname {csch}\left (d x +c \right )^{2}}{15}\right ) \coth \left (d x +c \right )}{d}\) \(199\)
risch \(a^{3} x -\frac {2 \left (45 a^{3} {\mathrm e}^{8 d x +8 c}+45 a^{2} b \,{\mathrm e}^{8 d x +8 c}-90 a^{3} {\mathrm e}^{6 d x +6 c}+90 a \,b^{2} {\mathrm e}^{6 d x +6 c}+140 a^{3} {\mathrm e}^{4 d x +4 c}+90 a^{2} b \,{\mathrm e}^{4 d x +4 c}+30 a \,b^{2} {\mathrm e}^{4 d x +4 c}+80 \,{\mathrm e}^{4 d x +4 c} b^{3}-70 a^{3} {\mathrm e}^{2 d x +2 c}+30 \,{\mathrm e}^{2 d x +2 c} a \,b^{2}-40 \,{\mathrm e}^{2 d x +2 c} b^{3}+23 a^{3}+9 a^{2} b -6 a \,b^{2}+8 b^{3}\right )}{15 d \left ({\mathrm e}^{2 d x +2 c}-1\right )^{5}}\) \(207\)

input
int(coth(d*x+c)^6*(a+b*sech(d*x+c)^2)^3,x,method=_RETURNVERBOSE)
 
output
1/d*(a^3*(d*x+c-coth(d*x+c)-1/3*coth(d*x+c)^3-1/5*coth(d*x+c)^5)+3*a^2*b*( 
-1/2/sinh(d*x+c)^5*cosh(d*x+c)^3+3/8/sinh(d*x+c)^5*cosh(d*x+c)+3/8*(-8/15- 
1/5*csch(d*x+c)^4+4/15*csch(d*x+c)^2)*coth(d*x+c))+3*a*b^2*(-1/4/sinh(d*x+ 
c)^5*cosh(d*x+c)-1/4*(-8/15-1/5*csch(d*x+c)^4+4/15*csch(d*x+c)^2)*coth(d*x 
+c))+b^3*(-8/15-1/5*csch(d*x+c)^4+4/15*csch(d*x+c)^2)*coth(d*x+c))
 
3.2.34.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 521 vs. \(2 (65) = 130\).

Time = 0.26 (sec) , antiderivative size = 521, normalized size of antiderivative = 7.55 \[ \int \coth ^6(c+d x) \left (a+b \text {sech}^2(c+d x)\right )^3 \, dx=-\frac {{\left (23 \, a^{3} + 9 \, a^{2} b - 6 \, a b^{2} + 8 \, b^{3}\right )} \cosh \left (d x + c\right )^{5} + 5 \, {\left (23 \, a^{3} + 9 \, a^{2} b - 6 \, a b^{2} + 8 \, b^{3}\right )} \cosh \left (d x + c\right ) \sinh \left (d x + c\right )^{4} - {\left (15 \, a^{3} d x + 23 \, a^{3} + 9 \, a^{2} b - 6 \, a b^{2} + 8 \, b^{3}\right )} \sinh \left (d x + c\right )^{5} - 5 \, {\left (5 \, a^{3} - 9 \, a^{2} b - 6 \, a b^{2} + 8 \, b^{3}\right )} \cosh \left (d x + c\right )^{3} + 5 \, {\left (15 \, a^{3} d x + 23 \, a^{3} + 9 \, a^{2} b - 6 \, a b^{2} + 8 \, b^{3} - 2 \, {\left (15 \, a^{3} d x + 23 \, a^{3} + 9 \, a^{2} b - 6 \, a b^{2} + 8 \, b^{3}\right )} \cosh \left (d x + c\right )^{2}\right )} \sinh \left (d x + c\right )^{3} + 5 \, {\left (2 \, {\left (23 \, a^{3} + 9 \, a^{2} b - 6 \, a b^{2} + 8 \, b^{3}\right )} \cosh \left (d x + c\right )^{3} - 3 \, {\left (5 \, a^{3} - 9 \, a^{2} b - 6 \, a b^{2} + 8 \, b^{3}\right )} \cosh \left (d x + c\right )\right )} \sinh \left (d x + c\right )^{2} + 10 \, {\left (5 \, a^{3} + 9 \, a^{2} b + 12 \, a b^{2} + 8 \, b^{3}\right )} \cosh \left (d x + c\right ) - 5 \, {\left (30 \, a^{3} d x + {\left (15 \, a^{3} d x + 23 \, a^{3} + 9 \, a^{2} b - 6 \, a b^{2} + 8 \, b^{3}\right )} \cosh \left (d x + c\right )^{4} + 46 \, a^{3} + 18 \, a^{2} b - 12 \, a b^{2} + 16 \, b^{3} - 3 \, {\left (15 \, a^{3} d x + 23 \, a^{3} + 9 \, a^{2} b - 6 \, a b^{2} + 8 \, b^{3}\right )} \cosh \left (d x + c\right )^{2}\right )} \sinh \left (d x + c\right )}{15 \, {\left (d \sinh \left (d x + c\right )^{5} + 5 \, {\left (2 \, d \cosh \left (d x + c\right )^{2} - d\right )} \sinh \left (d x + c\right )^{3} + 5 \, {\left (d \cosh \left (d x + c\right )^{4} - 3 \, d \cosh \left (d x + c\right )^{2} + 2 \, d\right )} \sinh \left (d x + c\right )\right )}} \]

input
integrate(coth(d*x+c)^6*(a+b*sech(d*x+c)^2)^3,x, algorithm="fricas")
 
output
-1/15*((23*a^3 + 9*a^2*b - 6*a*b^2 + 8*b^3)*cosh(d*x + c)^5 + 5*(23*a^3 + 
9*a^2*b - 6*a*b^2 + 8*b^3)*cosh(d*x + c)*sinh(d*x + c)^4 - (15*a^3*d*x + 2 
3*a^3 + 9*a^2*b - 6*a*b^2 + 8*b^3)*sinh(d*x + c)^5 - 5*(5*a^3 - 9*a^2*b - 
6*a*b^2 + 8*b^3)*cosh(d*x + c)^3 + 5*(15*a^3*d*x + 23*a^3 + 9*a^2*b - 6*a* 
b^2 + 8*b^3 - 2*(15*a^3*d*x + 23*a^3 + 9*a^2*b - 6*a*b^2 + 8*b^3)*cosh(d*x 
 + c)^2)*sinh(d*x + c)^3 + 5*(2*(23*a^3 + 9*a^2*b - 6*a*b^2 + 8*b^3)*cosh( 
d*x + c)^3 - 3*(5*a^3 - 9*a^2*b - 6*a*b^2 + 8*b^3)*cosh(d*x + c))*sinh(d*x 
 + c)^2 + 10*(5*a^3 + 9*a^2*b + 12*a*b^2 + 8*b^3)*cosh(d*x + c) - 5*(30*a^ 
3*d*x + (15*a^3*d*x + 23*a^3 + 9*a^2*b - 6*a*b^2 + 8*b^3)*cosh(d*x + c)^4 
+ 46*a^3 + 18*a^2*b - 12*a*b^2 + 16*b^3 - 3*(15*a^3*d*x + 23*a^3 + 9*a^2*b 
 - 6*a*b^2 + 8*b^3)*cosh(d*x + c)^2)*sinh(d*x + c))/(d*sinh(d*x + c)^5 + 5 
*(2*d*cosh(d*x + c)^2 - d)*sinh(d*x + c)^3 + 5*(d*cosh(d*x + c)^4 - 3*d*co 
sh(d*x + c)^2 + 2*d)*sinh(d*x + c))
 
3.2.34.6 Sympy [F(-1)]

Timed out. \[ \int \coth ^6(c+d x) \left (a+b \text {sech}^2(c+d x)\right )^3 \, dx=\text {Timed out} \]

input
integrate(coth(d*x+c)**6*(a+b*sech(d*x+c)**2)**3,x)
 
output
Timed out
 
3.2.34.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 826 vs. \(2 (65) = 130\).

Time = 0.21 (sec) , antiderivative size = 826, normalized size of antiderivative = 11.97 \[ \int \coth ^6(c+d x) \left (a+b \text {sech}^2(c+d x)\right )^3 \, dx=\text {Too large to display} \]

input
integrate(coth(d*x+c)^6*(a+b*sech(d*x+c)^2)^3,x, algorithm="maxima")
 
output
1/15*a^3*(15*x + 15*c/d - 2*(70*e^(-2*d*x - 2*c) - 140*e^(-4*d*x - 4*c) + 
90*e^(-6*d*x - 6*c) - 45*e^(-8*d*x - 8*c) - 23)/(d*(5*e^(-2*d*x - 2*c) - 1 
0*e^(-4*d*x - 4*c) + 10*e^(-6*d*x - 6*c) - 5*e^(-8*d*x - 8*c) + e^(-10*d*x 
 - 10*c) - 1))) + 4/5*a*b^2*(5*e^(-2*d*x - 2*c)/(d*(5*e^(-2*d*x - 2*c) - 1 
0*e^(-4*d*x - 4*c) + 10*e^(-6*d*x - 6*c) - 5*e^(-8*d*x - 8*c) + e^(-10*d*x 
 - 10*c) - 1)) + 5*e^(-4*d*x - 4*c)/(d*(5*e^(-2*d*x - 2*c) - 10*e^(-4*d*x 
- 4*c) + 10*e^(-6*d*x - 6*c) - 5*e^(-8*d*x - 8*c) + e^(-10*d*x - 10*c) - 1 
)) + 15*e^(-6*d*x - 6*c)/(d*(5*e^(-2*d*x - 2*c) - 10*e^(-4*d*x - 4*c) + 10 
*e^(-6*d*x - 6*c) - 5*e^(-8*d*x - 8*c) + e^(-10*d*x - 10*c) - 1)) - 1/(d*( 
5*e^(-2*d*x - 2*c) - 10*e^(-4*d*x - 4*c) + 10*e^(-6*d*x - 6*c) - 5*e^(-8*d 
*x - 8*c) + e^(-10*d*x - 10*c) - 1))) - 16/15*b^3*(5*e^(-2*d*x - 2*c)/(d*( 
5*e^(-2*d*x - 2*c) - 10*e^(-4*d*x - 4*c) + 10*e^(-6*d*x - 6*c) - 5*e^(-8*d 
*x - 8*c) + e^(-10*d*x - 10*c) - 1)) - 10*e^(-4*d*x - 4*c)/(d*(5*e^(-2*d*x 
 - 2*c) - 10*e^(-4*d*x - 4*c) + 10*e^(-6*d*x - 6*c) - 5*e^(-8*d*x - 8*c) + 
 e^(-10*d*x - 10*c) - 1)) - 1/(d*(5*e^(-2*d*x - 2*c) - 10*e^(-4*d*x - 4*c) 
 + 10*e^(-6*d*x - 6*c) - 5*e^(-8*d*x - 8*c) + e^(-10*d*x - 10*c) - 1))) + 
6/5*a^2*b*(10*e^(-4*d*x - 4*c)/(d*(5*e^(-2*d*x - 2*c) - 10*e^(-4*d*x - 4*c 
) + 10*e^(-6*d*x - 6*c) - 5*e^(-8*d*x - 8*c) + e^(-10*d*x - 10*c) - 1)) + 
5*e^(-8*d*x - 8*c)/(d*(5*e^(-2*d*x - 2*c) - 10*e^(-4*d*x - 4*c) + 10*e^(-6 
*d*x - 6*c) - 5*e^(-8*d*x - 8*c) + e^(-10*d*x - 10*c) - 1)) + 1/(d*(5*e...
 
3.2.34.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 213 vs. \(2 (65) = 130\).

Time = 0.38 (sec) , antiderivative size = 213, normalized size of antiderivative = 3.09 \[ \int \coth ^6(c+d x) \left (a+b \text {sech}^2(c+d x)\right )^3 \, dx=\frac {15 \, {\left (d x + c\right )} a^{3} - \frac {2 \, {\left (45 \, a^{3} e^{\left (8 \, d x + 8 \, c\right )} + 45 \, a^{2} b e^{\left (8 \, d x + 8 \, c\right )} - 90 \, a^{3} e^{\left (6 \, d x + 6 \, c\right )} + 90 \, a b^{2} e^{\left (6 \, d x + 6 \, c\right )} + 140 \, a^{3} e^{\left (4 \, d x + 4 \, c\right )} + 90 \, a^{2} b e^{\left (4 \, d x + 4 \, c\right )} + 30 \, a b^{2} e^{\left (4 \, d x + 4 \, c\right )} + 80 \, b^{3} e^{\left (4 \, d x + 4 \, c\right )} - 70 \, a^{3} e^{\left (2 \, d x + 2 \, c\right )} + 30 \, a b^{2} e^{\left (2 \, d x + 2 \, c\right )} - 40 \, b^{3} e^{\left (2 \, d x + 2 \, c\right )} + 23 \, a^{3} + 9 \, a^{2} b - 6 \, a b^{2} + 8 \, b^{3}\right )}}{{\left (e^{\left (2 \, d x + 2 \, c\right )} - 1\right )}^{5}}}{15 \, d} \]

input
integrate(coth(d*x+c)^6*(a+b*sech(d*x+c)^2)^3,x, algorithm="giac")
 
output
1/15*(15*(d*x + c)*a^3 - 2*(45*a^3*e^(8*d*x + 8*c) + 45*a^2*b*e^(8*d*x + 8 
*c) - 90*a^3*e^(6*d*x + 6*c) + 90*a*b^2*e^(6*d*x + 6*c) + 140*a^3*e^(4*d*x 
 + 4*c) + 90*a^2*b*e^(4*d*x + 4*c) + 30*a*b^2*e^(4*d*x + 4*c) + 80*b^3*e^( 
4*d*x + 4*c) - 70*a^3*e^(2*d*x + 2*c) + 30*a*b^2*e^(2*d*x + 2*c) - 40*b^3* 
e^(2*d*x + 2*c) + 23*a^3 + 9*a^2*b - 6*a*b^2 + 8*b^3)/(e^(2*d*x + 2*c) - 1 
)^5)/d
 
3.2.34.9 Mupad [B] (verification not implemented)

Time = 2.32 (sec) , antiderivative size = 547, normalized size of antiderivative = 7.93 \[ \int \coth ^6(c+d x) \left (a+b \text {sech}^2(c+d x)\right )^3 \, dx=a^3\,x-\frac {\frac {6\,\left (a^3+b\,a^2\right )}{5\,d}+\frac {24\,{\mathrm {e}}^{2\,c+2\,d\,x}\,\left (a^2\,b+a\,b^2\right )}{5\,d}+\frac {24\,{\mathrm {e}}^{6\,c+6\,d\,x}\,\left (a^2\,b+a\,b^2\right )}{5\,d}+\frac {6\,{\mathrm {e}}^{8\,c+8\,d\,x}\,\left (a^3+b\,a^2\right )}{5\,d}+\frac {4\,{\mathrm {e}}^{4\,c+4\,d\,x}\,\left (5\,a^3+9\,a^2\,b+12\,a\,b^2+8\,b^3\right )}{5\,d}}{5\,{\mathrm {e}}^{2\,c+2\,d\,x}-10\,{\mathrm {e}}^{4\,c+4\,d\,x}+10\,{\mathrm {e}}^{6\,c+6\,d\,x}-5\,{\mathrm {e}}^{8\,c+8\,d\,x}+{\mathrm {e}}^{10\,c+10\,d\,x}-1}-\frac {\frac {6\,\left (a^2\,b+a\,b^2\right )}{5\,d}+\frac {6\,{\mathrm {e}}^{2\,c+2\,d\,x}\,\left (a^3+b\,a^2\right )}{5\,d}}{{\mathrm {e}}^{4\,c+4\,d\,x}-2\,{\mathrm {e}}^{2\,c+2\,d\,x}+1}-\frac {\frac {6\,\left (a^2\,b+a\,b^2\right )}{5\,d}+\frac {18\,{\mathrm {e}}^{4\,c+4\,d\,x}\,\left (a^2\,b+a\,b^2\right )}{5\,d}+\frac {6\,{\mathrm {e}}^{6\,c+6\,d\,x}\,\left (a^3+b\,a^2\right )}{5\,d}+\frac {2\,{\mathrm {e}}^{2\,c+2\,d\,x}\,\left (5\,a^3+9\,a^2\,b+12\,a\,b^2+8\,b^3\right )}{5\,d}}{6\,{\mathrm {e}}^{4\,c+4\,d\,x}-4\,{\mathrm {e}}^{2\,c+2\,d\,x}-4\,{\mathrm {e}}^{6\,c+6\,d\,x}+{\mathrm {e}}^{8\,c+8\,d\,x}+1}-\frac {\frac {2\,\left (5\,a^3+9\,a^2\,b+12\,a\,b^2+8\,b^3\right )}{15\,d}+\frac {12\,{\mathrm {e}}^{2\,c+2\,d\,x}\,\left (a^2\,b+a\,b^2\right )}{5\,d}+\frac {6\,{\mathrm {e}}^{4\,c+4\,d\,x}\,\left (a^3+b\,a^2\right )}{5\,d}}{3\,{\mathrm {e}}^{2\,c+2\,d\,x}-3\,{\mathrm {e}}^{4\,c+4\,d\,x}+{\mathrm {e}}^{6\,c+6\,d\,x}-1}-\frac {6\,\left (a^3+b\,a^2\right )}{5\,d\,\left ({\mathrm {e}}^{2\,c+2\,d\,x}-1\right )} \]

input
int(coth(c + d*x)^6*(a + b/cosh(c + d*x)^2)^3,x)
 
output
a^3*x - ((6*(a^2*b + a^3))/(5*d) + (24*exp(2*c + 2*d*x)*(a*b^2 + a^2*b))/( 
5*d) + (24*exp(6*c + 6*d*x)*(a*b^2 + a^2*b))/(5*d) + (6*exp(8*c + 8*d*x)*( 
a^2*b + a^3))/(5*d) + (4*exp(4*c + 4*d*x)*(12*a*b^2 + 9*a^2*b + 5*a^3 + 8* 
b^3))/(5*d))/(5*exp(2*c + 2*d*x) - 10*exp(4*c + 4*d*x) + 10*exp(6*c + 6*d* 
x) - 5*exp(8*c + 8*d*x) + exp(10*c + 10*d*x) - 1) - ((6*(a*b^2 + a^2*b))/( 
5*d) + (6*exp(2*c + 2*d*x)*(a^2*b + a^3))/(5*d))/(exp(4*c + 4*d*x) - 2*exp 
(2*c + 2*d*x) + 1) - ((6*(a*b^2 + a^2*b))/(5*d) + (18*exp(4*c + 4*d*x)*(a* 
b^2 + a^2*b))/(5*d) + (6*exp(6*c + 6*d*x)*(a^2*b + a^3))/(5*d) + (2*exp(2* 
c + 2*d*x)*(12*a*b^2 + 9*a^2*b + 5*a^3 + 8*b^3))/(5*d))/(6*exp(4*c + 4*d*x 
) - 4*exp(2*c + 2*d*x) - 4*exp(6*c + 6*d*x) + exp(8*c + 8*d*x) + 1) - ((2* 
(12*a*b^2 + 9*a^2*b + 5*a^3 + 8*b^3))/(15*d) + (12*exp(2*c + 2*d*x)*(a*b^2 
 + a^2*b))/(5*d) + (6*exp(4*c + 4*d*x)*(a^2*b + a^3))/(5*d))/(3*exp(2*c + 
2*d*x) - 3*exp(4*c + 4*d*x) + exp(6*c + 6*d*x) - 1) - (6*(a^2*b + a^3))/(5 
*d*(exp(2*c + 2*d*x) - 1))